## NERVOUS NERVOUS SYSTEMS

#### What?

A project to develop a central control system utilising spiking neural networks, experimenting with exploration and obstacle avoidance behaviours for use on a robot. Why?

### This robot project has been carried out to explore the possibilities of designing a system which replaces the need

# NERVOUS ROBOT

Biologically Inspired Spiking Neural Network for Autonomous Robot Control

#### Spiking Neural Networks

Spiking neural networks (SNN) are a type of artificial neural network which aim to more naturally represent a biological nervous system and allow for more unique event driven autonomous behaviours over traditional algorithms.

The Leaky integrate & fire model (LIF) shown below, is the most basic model of a neuron and synapse, and has been used in this project

lf U<sub>mem</sub>>**ð,** then V<sub>out</sub>

1)





for traditional control algorithms and use biologically inspired spiking neural networks to achieve event driven behaviours allowing a robot to explore its environment whilst employing obstacle avoidance.

Design of a set of spiking neural microcircuits will enable a range of reactive behaviours based upon the sensors onboard the robot.

















A state machine was designed to aid with the thought process of the robot's behaviours.

A summary of the states is as follows:

- Setup the SNN
- Read the sensor measurements
- Set neuron characteristics from measurements
- Run SNN
- Determine direction and speed to move
- Move direction and set speed

Later on this state machine was reduced in complexity to allow for a more event driven operation of the robot.

#### About the Robot:

The robots simple hardware design enables easy decisions to be made when choosing the desired behaviours.

- Two independent motors/wheels with a castor wheel to balance the robot
- Onboard battery power supply
- Ultrasonic sensors facing varying directions are used which provide long distance reliable measurements



Low level Arduino running a RTOS for efficient communication with peripherals Ultrasonic sensors for Differential drive robot long range accurate distance measurements dependent control on each motor

Raspberry Pi for SNN and more functionality

#### **Spiking Neural Network Diagram:**

Visualisation of the neurons and synapses connected together Defines the structure of the network and it's connections that are present on the robot









Inhibitory Response Excitatory Response



#### **Behaviours & Manoeuvres:**

- Robot should be able to roam around a given space whilst avoiding obstacles.
- A number of simple behaviours were designed and planned. The diagram above displays some key manoeuvres and

#### <u>CPU:</u>

- Arduino Nano running RTOS
- Raspberry Pi providing computing power for SNN
- Connected via serial UART connection

#### <u>Software:</u>

- C++, fast and efficient on the Nano
- Python, flexibility and wide range of libraries



Contact: wab513@york.ac.uk

William Betteridge, Andy M. Tyrrell, Andrew Walter, Martin Trefzer, Shimeng Wu

School of Physics, Engineering & Technology University of York

#### active neurons in each case:

- Turn away from a wall (1 & 2)
- Turn away from the obstacle in front of one half (3 & 4)
- Reverse or stop movement (5 & 6)

#### Summary:

From experimenting and testing the robot after implementing the code, it has been shown that the use of SNNs has been successful in providing a control system for exploration and obstacle avoidance on an autonomous robot.

- A simple but modular network design allowed for ease of development with plenty of customisability.
- Expansion to provide extra functionality is possible.
- The majority of the implementation utilising the Raspberry Pi provided a suitable level of control.
- Delays between the sensors and the robots decision/movement have been experienced. A number of possibilities for improvement could be explored.